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ABSTRACT

A computational study is performed to study mixing characteristics in electrohydrody-

namic flows at length scales of a micro-metre. A t-shaped microchannel is analyzed where

two fluids of differing electrical conductivities are allowed to mix under the application of an

external electric field. A two dimensional finite volume code based on the SIMPLE algorithm

is employed. The effect of mixing is characterized in terms of a nondimensional parameter λ

measuring the relative magnitude of the Coulombic force due to the electric field to the inertia

force. Based on the relative concentrations of the two mixing streams a mixing efficiency is

proposed and the mixing characteristics are studied by varying the value of the parameter

λ(while keeping the concentration ratio fixed). Some observations regarding the time period

of oscillation of the disturbance in the absence of any forcing are reported. Simulations are

also performed by oscillating the applied external electric field to see the effect it has on the

mixing compared to the case with the d.c. electric field. It was observed that oscillation of

the electric field at the natural frequency significantly enhances the mixing quite in agreement

with the general character of experimental observations. Simulation results for these different

cases are presented.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

In an era of miniaturization of devices of engineering and biological interest, the control

and manipulation of microfluidic devices assumes significance. Microfluidics may be defined as

the control and manipulation of fluids when length scales are roughly of the order of 10−6 of a

metre. Apart from several novel features of theoretical interest, these devices find extensive use

in industrial applications. In the field of molecular biology, for example, microfluidic devices

find use in DNA analysis: in polymerase chain reaction. They are also used as electroosmotic

pumps for fuel cells. They are also extensively used in the fields of chemical analysis for micro

total analysis sytems(µTAS)(Lin et al (2004)). These µTAS, allow the integration of several

laboratory processes onto a single chip of only few millimetres in size. Several of these devices

involve the flow of two or more fluids at different molar concentrations and the mixing, or lack of

mixing, of the different fluids is of considerable interest. The proper functioning of these devices

is dependent on the stability and mixing characteristics of the resultant flow. In certain cases

we would like the flow to be stable, and the two streams to be unmixed, while in certain other

cases we would prefer unstability of the resultant flow, primarily to generate significant mixing.

For example isoelectric focussing devices depend on the stable transport of species while the

opposite is true for micromixers, where significant mixing of the fluids is expected. Due to

the small length scales involved, viscous damping plays a critical role in ensuring the stability

of the resultant flow. Therefore, if we are looking to enhance mixing at such small length

scales, several other means apart from molecular diffusion have to be explored. Various ways

of enhancing mixing especially by supplying energy to the resultant devices are known and we

shall concern ourselves with the case where mixing is achieved by means of an external applied
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electric field. It is here that the experiments of Park et al (2005) and Chen and Santiago (2002)

offer a lot of promise. They observed that when electric fields were applied orthogonal to the

direction of the conductivity gradient, there exists a critical electric field beyond which the

two streams mix together. Figures (1.1,1.2)from the experiments are reproduced below to give

an idea of the kind of instability and mixing that can be achieved. This is an area broadly

called electrohydrodynamics which also includes electrokinetics: the chief mechanism by which

the instability is generated.(These terms are briefly reviewd in the section below). Following

this Hu and Jin (2007) did a parametric study to quantify the mixing in a wide variety of

electrokinetic configurations by varying the electric fields and concentration gradients. Several

computational studies and studies of hydrodynamic stability were also conducted to further

the understanding of these types of flow and the central ones amongst those are reviewed in a

forthcoming section. Motivated by the various experiments, especially those performed by Hu

and Jin (2007), the objective of the present study is to try to understand, through numerical

simulations, the mixing characteristics in these t-shaped microchannels especially in the case

where the external applied electric field is subject to oscillatory perturbations in contrast to

the unforced case.

Figure 1.1 Instability in a T-shaped microchannel observed by Chen and
Santiago (2002)

1.2 Some Technical Terms

In this section, the various terms associated with electrohydrodynamic phenomena are

briefly reviewed. The exposition is largely based on Probstein (1994). Electrohydrodynam-

ics(EHD), may be defined as the dynamics of electrically charged fluids. The following notions

are useful in the study of EHD.
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Figure 1.2 Instability in a T-shaped microchannel observed by Park et
al (2005)

1.2.1 Electric Double Layer

When a solid surface is brought into contact with an aqueos medium, it acquires a surface

electric charge, by means of various mechanisms such as ionization, ion adsorbtion and ion

dissolution(see Probstein (1994)). The effect of this is that, when the charged surface comes

into contact with an electrolyte solution which has charged ions, it will begin to influence the

distribution of those ions. Oppositely charged ions(called counterions) will be attracted and

ions of like charge(called coions)are repelled. When this is combined with the general mixing

tendency because of the random thermal motion of the ions, it forms what is known as the

electric double layer. This electrical double layer is located close to the charged surface and

it results in redistributing the charged ions so that near the solid surface, there is an excess

of counter ions compared to co-ions. The thickness of this diffuse charged double layer is

characterized by the Debye length. For ions of a finite size the diffuse double layer is actually

made of an inner layer called the Stern layer and an outer layer. The plane separating the

two is called the Stern plane. (see Figure 1.3) The electric potential at this plane is close to

the electrokinetic potential or the zeta (ζ) potential which is the electric potential at the shear
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surface between the charged solid surface and the electrolyte solution. This shear surface is

characterized as the plane where the mobile portion of the diffuse charged layer can slip or

flow past the charge surface (Probstein (1994)). This motion of the electroosmotic velocity

past a charged surface can be modelled using the Helmholtz-Smoluchowski equation given by

U = −εζE
µ

where µ is the viscosity of the fluid, E is the external applied electric field parallel to the solid

wall surface, ε is the permittivity of the fluid and ζ is the zeta potential.

Figure 1.3 Electric double layer and associated potential. Picture taken
from Double Layer (interfacial)

1.2.2 Electroosmosis and Electrophoresis

Electroosmosis may be defined as the movement of the liquid relative to a stationary charged

surface. When an electric potential is applied to the double layer, the mobile portion of the

double layer migrates towards the oppositely charged electrode(Oddy (2005)). This electromi-

gration of the charged species causes viscous shearing of the adjacent liquid molecules resulting

in bulk motion of the electrolyte. This motion may be modelled using the slip velocity de-
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scribed above. Electrophoresis is the movement of a charged surface plus the attached material

relative to a stationary liquid in an applied external electric field. (Probstein (1994))

1.2.3 Electrokinetics

We shall concern ourselves in this work with electrokinetic phenomena, which are due to

the interactions of electric charges and liquids and are often characterized by the presence of an

electic double layer(Oddy (2005)).The four phenomena which are classified as electrokinetic

phenomena are (Probstein (1994)): electroosmosis, electrophoresis, streaming potential and

sedimentation potential. The first two were discussed above while the last two are outside the

scope of this work.

1.3 Survey of Literature

Electrohydrodynamics itself is a venerable old field, going as far back as the 17th century

(Saville (1998)). It has been known, for quite some time, that electric fields, applied paral-

lel or perpendicular to the direction of the conductivity gradient significantly affect stability

and the mixing characteristics of the resultant flow. Several studies have been performed in

this regard, some of which are reviewed below.One of the first comprehensive surveys of elec-

trohydrodynamics was by Taylor and Melcher (1969). Their study was concerned with the

interfacial deformation due to shear stesses of a parallel electric field applied to two fluids of

different concentrations at rest. They showed that when a fluid system includes interfacial re-

gions separated by fluids of different electrical properties, then the electromechanical coupling

forces at the interface is likely to dominate the resulting electrohydrodynamics, i.e the surface

interactions at the interface are very important. They presented several cases where cellular

convection was achieved in a static liquid utilizing the electric shear forces. They also per-

formed stability analysis on the instability due to the applied electric field(both a.c and d.c) on

some characteristic flow configurations. Saville (1998) presents a derivation of the differential

equations describing electrohydrodynamic flow. This model is called the leaky dielectric model

which was first introduced by Taylor and Melcher (1969) The essence of the leaky dielectric
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model is the Ohmic model in which the electrohydrodynamic instability is caused by the ac-

cumulation of charges at the material interfaces and it is then coupled to the fluid motion by

means of electrical body forces. Also presented are experimental results on a wide class of

electrohydrodynamic flows including the motion of charged drops, charged cylinders and apo-

lar liquids showing qualitative agreement with the theory. Hoburg and Melcher (1976) looked

at the problem of electric field applied perpendicular to the conductivity gradient, for which

they performed a stability analysis. Chief among their findings was the fact that when the

interface of the two fluids is modelled with a finite width, the flow exhibits instablity resulting

in buckling and distortion of the interface. Baygents and Baldessari (1998) analysed the onset

of electrohydrodynamic motion in a layer of liquid in which there is a continuous variation

in the electrical conductivity, the conductivity gradients being associated with the gradients

in the concentration of the charge carrying solutes. They performed a linear stability analy-

sis and found that one relevent dimensionless parameter is an electric Rayleigh number Rae.

The diffusion of conductivity is crucial to the existence of a critical electric field(depending on

the above Rayleigh number) above which the flow is unstable. Chen et al (2005) looked at

convective and absolute instabilities associated with conductivity gradients. They present ex-

perimental, analytical and computational results for the instability in a t-shaped microchannel.

They used a model similar to the Ohmic model but allowed for two changes. They included a

diffusive term for conductivity following Baygents and Baldessari (1998) and they neglected

the charge relaxation process because of the extremely small time scale involved. Charge accu-

mulation at the interfaces of conductivity gradients gives rise to forces causing instability. The

electro-osmotic flow is also important. It plays a role in covecting the disturbance downstream

unless it is offset by the electro-viscous velocity perturbation. Park et al (2005) presented

several micromixer designs based on the observance of instabilities in t-shaped microchannels.

They found that for a configuration with cavities in it, the Coulombic force due to the inter-

action of the charge that acumulates at the corners and the electric field leads to instability

and increased mixing. Following this, Kang et al (2006) performed numerical analysis for the

electroosmotic flow of two liquids with different concentrations in a t-shaped microchannel.
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They showed that molecular diffusion played a critical role in instigating and maintaining the

instability even without any external forcing. Furthermore, they also showed that molecular

diffusion played a key role in making the wavy pattern look regular even though the flow was

unstable. They also showed that the origin of the instability lies in the polarization induced

by a conductivity gradient in the two mixing layers.

The present work is inspired for the most part by the experiments performed by Hu and

Jin (2007). They looked at a wide variety of combinations of electric fields(both direct and

alternating current) and concentration ratios. They quantified the mixing by proposing a

notion of mixing efficiency. Central among their findings was the fact that for external forcing

by means of an alternating electric field, the mixing is most enhanced when the frequency of

the imposed electric field is the same as the shedding frequency of the convective waves when

there is no forcing, i.e in the unforced natural oscillation case.

1.4 A brief overview of the instability mechanism

The basic nature of the instability process may be explained as follows. There is an ac-

cumulation of free charges at the interface due to diffusion of concentration and interface

deformation. When an electric field is applied, this results in Coulombic forces acting in

different directions which results in the generation of vortices which become unstable and pro-

pogate downstream when the applied electric field is above a certain threshold field. (Chen et

al (2003) Kang et al (2006))

1.5 Scope of the current work

In this thesis, we look at the mixing of two liquids with similar mechanical properties but

differing in their conductivity ratio,in a t-shaped microchannel in the presence of an external

applied electric field. We would like to study the effect of forcing the external electric field and

to see if this has any effect on the mixing for different values of the nondimensional parameter λ

which may be described as the ratio of the Coulombic force to the inertia force(this is explained

in the next chapter). A criteria of mixing is proposed and the effect of oscillating the electric
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field on mixing is observed based on this criteria.
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CHAPTER 2. NUMERICAL METHODS

2.1 Introduction

In this section the governing equations along with the boundary conditions are described.

The discretization scheme and the algorithm used are also briefly discussed.

2.2 Governing Equations

Since electrohydrodynamic flow involves the application of an electric field, we need equa-

tions for both the fluid flow and the electric field and a way of coupling the two. The figure

below represents the domain over which the analysis is going to take place. The following

assumptions are made about the flow. The permittivity of the liquid is uniform. The elec-

trolytes are free from chemical reaction. The activity coefficient is assumed to be unity. The

thickness of the electrical double layer is insignificant compared to the length scales, which in

this case is taken to be the channel width. These assumptions are consistent with previous

experimental and theoretical work(Park et al (2005), Lin et al (2004))The electric double

layer (Oddy (2005)) can be described as follows: When a solid phase comes in contact with

an aqueous phase, the solid phase acquires a surface electric charge due to a variety of mecha-

nisms. It also results in a thin diffuse charged layer near the surface. This thin charged layer

is called the electric double layer(EDL). This electric double layer may be modeled as a slip

velocity (Kang et al (2006)) which will be discussed later in this section.

In the electrostatic condition that governs the case we are considering, the simplified form

of the Maxwell’s equations are

∇ · (εE) = ρe (2.1)
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∇×E = 0 (2.2)

∂ρe
∂t

+∇ · i = 0. (2.3)

E is the electric field and φ is the electric potential and are related by the equation E = −∇φ.

ε is the electrical permittivity, ρe is the free charge density, t is the time and i is the current

density. For our purposes the electric current can be considered solely due to motion of the

ions and diffusion and electromigration terms may be neglected. We then get the equation for

the current as

i = −σ∇φ (2.4)

where σ is the conductivity. σ is given by σ = F 2(ω+ + ω−)c (Kang et al (2006)) and is

proportional to the concentration c. In the absence of any chemical reation and because there

is no new generation of ionic charges, the net charge must be conserved and we thus have the

charge conservation equation.
∂c

∂t
+ u · ∇c = D∇2c (2.5)

where D = 2D+D−/(D+ + D−) is the equivalent diffusivity. Because of the application of a

DC electric field, the displacement current in equation 2.3, ∂ρe

∂t is neglected. Then the electric

potential φ satisfies the following equation

∇ · (σ∇φ) = 0 (2.6)

Using the above equation and equation 2.1 we have the following equation for the free charge

density.

ρe = −ε∇c ·E
c

(2.7)

The momentum and continuity equations that govern an incompressible viscous (Newtonian)

flow can be written as

ρ
Du
Dt

= −∇p+ µ∇2u + ρeE (2.8)

∇ · u = 0 (2.9)

where, ρ,u, p, µ are respectively the density, velocity, pressure and dynamic viscosity of the

fluid under consideration and we have D
Dt = ∂

∂t +u ·∇. The extra term, ρeE, in the momentum
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equation is the force due to the electric field. We shall see that this term provides the necessary

coupling between the flow field, electric potential and the equation governing the conservation

of concentration.

2.3 Initial and Boundary Conditions

The domain of analysis is depicted in figure 2.1.

Figure 2.1 Domain of analysis from Kang et al (2006)

Using the thin electrical double layer assumption, we can model the electrical double layer

as a slip velocity, called the Helmholtz-Smoluchowski slip velocity (Kang et al (2006)) , uHS ,

as the slip velocity at the side walls, ut

ut = uHS = −εζE · t
µ

(2.10)

here ζ is the zeta potential at the wall and t is the unit tangential vector on the wall. In the

present work ad-hoc slip velocity is imposed on the boundaries, values for which were obtained

using Park et al (2005). The boundary conditions used in the simulations were as follows, On

the upper and lower walls, Upper wall:

c = cl;∇φ · n = Eo;u = 0, v = vl (2.11)
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Lower wall:

c = ch;∇φ · n = Eo;u = 0, v = vh (2.12)

Side walls:

∇c · n = 0;∇φ · n = 0; u · n = 0,u · t = uHS (2.13)

Outflow wall:

∇c · n = 0;φ = 0;
Du
Dt

= 0 (2.14)

where ch and cl are the high and low concentrations of the two electrolytic liquids. Eo is the

constant electric field applied at the inflow walls, n is the outward unit normal vector to the

boundary walls.

2.4 Nondimensionalization

The following equations are used in order to non-dimensionalize the given equations The

nondimensional time, lengths and velocities are given as

x̄ =
x

d
(2.15)

ȳ =
y

d
(2.16)

t̄ =
t

tc
(2.17)

ū =
u
uc

(2.18)

The electric field, concentration, electric potential and the free charge density are nondi-

mensionalized as follows,

Ē =
E
Eo

(2.19)

φ̄ =
φ

Eod
(2.20)

c̄ =
c

ch − cl
(2.21)

ρ̄e =
ρe

ε(Eo/d)
(2.22)

where the average inlet velocity is used as the characteristic velocity for nondimensionalization.

The characteristic length scale, d, is the width of the channel at the inlet portion of the ’T’,
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i.e the width of the arms of the ’T’. The characteristic time scale is chosen as tc = d
uc

. The

reference electric field, Eo, is the constant electric field applied at the inlet. ch and cl are the

higher and lower concentrations respectively, at the two inlets.

Using these nondimensional variables we obtain the following non-dimensional equations,

where the overbar is not used to denote the nondimensional variables. Thus, from here onwards

the variables and the equations are assumed to be dimensionless.

Du
Dt

= −∇p+
1
Re
∇2u + λ(∇2φ)∇φ (2.23)

∇ · (c∇φ) = 0. (2.24)

Dc

Dt
=

1
Pe
∇2c (2.25)

where Re = ucd
ν is the Reynolds number. Sc = ν

D is the Schmidt number where D is the

equivalent diffusivity, Pe = ucd
D = ReSc is the Peclet number which is the product of the

Reynolds number and Schmidt number. The parameter λ , which is the ratio of the relative

magnitude of the Coulombic force and the Inertia force is given by the following formula,

λ =
εEo

2

ρuc2
(2.26)

In the case we are considering we allow the Reynolds number to be 0.14, the Peclet number

to be 87, the Schmidt number to be 622. The parameter λ will be varied during the course of

the simulations to see the effect it has on the mixing characteristics.

2.5 Solution methodology

The differential form of the Navier Stokes equation(with the additional forcing term) is

given below so as to facilitate easy reference during the description of the algorithm.

∂(ρui)
∂t

+
∂ρuiuj
∂xj

=
∂τij
∂xj
− ∂p

∂xi
+ λ

∂2φ

∂x2
i

∂φ

∂xi
(2.27)

and the continuity equation,
∂ui
∂xi

= 0
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Here the second term in the left hand side of equation 2.27 is the convective part and the first

equation in the right hand side is the viscous part. These equations are linearized (see ref.

Ferziger and Peric (1994)) and we get the algebraic equations for the unknowns(velocities and

pressure) of the form (the equation for velocity is given as an example)

APui,P +
∑
i

Alu
n+1
i,l = Qn+1

ui
− (

δpn+1

δxi
)

We shall follow the SIMPLE algorithm to discretize and solve the Navier Stokes equations.

SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations and is described in

detail by Patankar (1980) and also by Ferziger and Peric (1994). This method is a finite

volume method, which means that the solution domain is divided into finite number of control

volumes and across each of those volumes, the integral form of the conservation equations are

solved. The centroid of the volumes has a computational node at which the variables of interest

are stored. The advantage of this method is the fact that it is close to the physics of the flow

as conservation equations are used at each of the smaller volumes. We use a collocated grid in

which the same control volume is used for all the variables of interest.

The algorithm that is used is given below

1. Start the calculation at the new time step using the values at the old time step as an

initial guess.

2. Assemble and solve the linearized algebraic equations so as to get the velocity components

u∗i

3. Solve a poisson equation to obtain the pressure correction term p′

4. Correct the pressure and velocity terms to get new velocities ui which satisfy continuity

equation and new pressure p

5. Solve the other equations for the electric potential φ and the concentration c

6. Use p as the new guessed pressure field p∗ and repeat the previous steps until the cor-

rections are very small.
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A brief description of some of the steps in the algorithm is of order. The mass fluxes is

given by, (here the ”east” mass flux is given as an example)

ṁ =
∫
Si+1/2

ρv · ndS ≈ (ρu)i+1/2Si+1/2

and the mass flux at the cell face is approximated using the central difference scheme ui+1/2 =

u(i+1,j)+u(i,j)
2 Here S denotes the cell face area normal to the direction of the flow. The

convective flux is given by,

Fi+1/2 =
∫
S
ρuiv · ndS = ṁi+1/2ui+1/2

. Here, both a central difference scheme given by

Fi+1/2 = ρS
ui + ui+1

2

and an upwind scheme which is given by

Fi+1/2 =


ρSui when ui > 0,

ρSui+1 when ui < 0.

are used in calculating the fluxes. Due to the blending scheme used, in the final analysis the

upwind cancels out and we get a central scheme of second order. The coefficient for the viscous

flux given by,

D =
µS

dx

is implicitly is added to the coefficient matrix A. Since the terms involved in the convective

derivative are nonlinear we linearlize it and, neglecting the higher order nonlinear terms obtain

a Poisson equation for the pressure correction as (see Ferziger and Peric (1994))

δ

δxi
(
δ4p
δxi

) = (
1
4t

)
δ(ρu∗i )
δxi

(2.28)

And we use this pressure to update the velocity.

un+1
i = u∗i −

4t
ρ

δ4p
δxi

(2.29)

Also in order to prevent the odd even decoupling because of a collocated grid arrangement, we

use the Rhie and Chow interpolation (Rhie and Chow (1983)) to interpolate the fluxes using
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four grid points so that any oscillations of the pressure field is taken into account. The same

method is used to solve for the concentration c. Once the velocity field is known , then c is

an unknown scalar and can be solved by the same methods of discretization, building up the

matrix and then solving it. In order to solve the equation for φ the concentration c is used in

the viscous flux term. The additional term in the momentum equations due to the electric field

is simply added on as a body force source term. In order to implement boundary conditions,

ghost cells were used. Thus, a new cell is artificially introduced beyond the boundary and

the velocity at that cell is chosen so that in combination with the velocity at the first grid

point in the domain, the required velocity at the boundary is satisfied by linearly interpolating

the two velocities. The inflow, outflow and no slip boundary conditions were implemented

using the ghost boundary condition. For example, for the no slip, the velocity at the ghost

point is negative the velocity at the first grid point. For the pressure correction equation a

zero gradient condition is imposed on all the boundaries where the mass flux is known, i.e

the inflow, outflow and wall boundaries. The boundary conditions for electric potential and

concentration are similarly imposed using the ghost cells and the same boundary conditions

are used as is specified in Section 2.3 In order to solve the linearized equation the strongly

implicit procedure developed by Stone (see Stone (1968)) is used. This is particularly suited to

solve large systems of sparse matrices which are discretized from partial differential equations.

This is known as the inner iterations where the entries in the coefficient matrices are fixed and

it is solved by iteration to a specified degree of tolerance. We also integrate in time and set

up the matrix at each time step. These are the outer iterations, which solves the equations

is time for the unsteady case. Here an Euler implicit three-time level method is used so the

values at the previous two time steps are used in the current time step calculation. A uniform

cartesian grid of dimension 352 × 52 is used. The time step size is fixed at 4t = 0.01 The

spatial discretisation used is 4x = 4y = 0.04 Because we use a cartesian grid, in order to

generate the ’T’ shape it was necessary to use ”I-blanking”. This consists of modifying the

A matrix and the source terms SU , so that all the variables of interest are zeroed out in the
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blanked region. This is implemented in the code as follows.

AP (I, J) = 1

SU(I, J) = 0

Ai(I, J) = 0

where i denotes all the neighbouring nodes with respect to the given node. This results in

zeroing out all the variables of interest in the blanked out region. The boundary condition

at the boundary of the rib is treated the same way using the ghost points which are simply

shifted in their spatial locations compared to the unblanked regions. Two rectangular blanked

regions are used in the current code to create the conditions of a ’T’ shaped region. The code

used is one that is available freely on the web (Ferziger and Peric ftp (1994)). A number of

modifications to the existing code were made including conversion from Fortran 77 to Fortran

90, adding the equation for concentration, adding source term for the electric force, i-blanking

the ribs to create a t shaped region and changing the inlet, outlet and boundary conditions.
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CHAPTER 3. RESULTS: CASE I: UNFORCED CASE

In this chapter the simulation results for the case with a d.c electric field are presented. The

value of λ is varied from 80 to 180 some of the salient features of the simulations are explored.

We may recall that the parameter λ, measures the relative magnitude of the Coulombic force

to the viscous force and increasing the value of this parameter is equivalent to increasing the

electric field (and thereby the electric force) with respect to the viscous force.

3.1 Preliminary results

In this section we observe the results obtained by increasing the value of λ.

3.1.1 Case(i): λ = 80

The figures from the simulation are given below. These are contour plots of the concen-

trations of the two mixing streams. The blue regions are those with low concentrations and

the red regions are those with a higher concentrations. As we can see from the figure, the

instability generates a wavy pattern which grows initially but damps out as time progresses

due to the dominant part played by the viscous forces.

3.1.2 Case(ii): λ = 120

In this case the wavy pattern generated does not die out after a period of time but sustains

itself with some kind of periodicity. The strange pattern that came out of these simulations

was that, associated with each value of λ was there was a natural frequency of oscillation of

the mixing pattern(characterized here by monitoring the time evolution of the velocity at a

single spatial point). This is explored in more detail the next section.
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Figure 3.1 Plot of concentration, λ = 80, t = 0.28

Figure 3.2 Plot of concentration, λ = 80, t = 4.28

Figure 3.3 Plot of concentration, λ = 80, t = 8.28

Figure 3.4 Plot of concentration, λ = 80, t = 16.28

Figure 3.5 Plot of concentration, λ = 120, t = 0.28

Figure 3.6 Plot of concentration, λ = 120, t = 2.28

Figure 3.7 Plot of concentration, λ = 120, t = 4.28
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Figure 3.8 Plot of concentration, λ = 120, t = 6.28

Figure 3.9 Plot of concentration, λ = 120, t = 8.28

Figure 3.10 Plot of concentration, λ = 120, t = 10.28

Figure 3.11 Plot of concentration, λ = 120, t = 12.28

Figure 3.12 Plot of concentration, λ = 120, t = 14.28

Figure 3.13 Plot of concentration, λ = 120, t = 16.28
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3.1.3 Case(iii): λ = 150

In this section the value of lambda is increased to 150 . We can observe from the results

that the mixing tends to increase with increase in the value of λ. One can also see the formation

of a hump shaped region in Figure 3.19 and it propogates downstream.

3.1.4 Case(iv): λ = 180

The results of the simulation are given below. There are atleast three humps that appear

and propogate downstream. It appears that there is a lot more mixing in this case based on

looking at the pictures.

Figure 3.14 Plot of concentration, λ = 150, t = 0.28

Figure 3.15 Plot of concentration, λ = 150, t = 2.28

Figure 3.16 Plot of concentration, λ = 150, t = 4.28
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Figure 3.17 Plot of concentration, λ = 150, t = 6.28

Figure 3.18 Plot of concentration, λ = 150, t = 8.28

Figure 3.19 Plot of concentration, λ = 150, t = 10.28

Figure 3.20 Plot of concentration, λ = 150, t = 12.28

Figure 3.21 Plot of concentration, λ = 150, t = 14.28

Figure 3.22 Plot of concentration, λ = 180, t = 0.28

Figure 3.23 Plot of concentration, λ = 180, t = 2.28
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Figure 3.24 Plot of concentration, λ = 180, t = 4.28

Figure 3.25 Plot of concentration, λ = 180, t = 6.28

Figure 3.26 Plot of concentration, λ = 180, t = 8.28

Figure 3.27 Plot of concentration, λ = 180, t = 10.28
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3.2 Mixing Efficiency

In order to characterize mixing quantitatively, some notion of mixing effeciency is needed.

Hu and Jin (2007) defined a mixing efficiency based on the intensity of pixels in the image. In

this computational study, since the results of the entire flowfield are available, one can obtain a

mixing efficiency on the entire flow field. Let ch and cl be the initial concentrations of the two

mixing streams (called ”high” and ”low”) respectively. Then the mixing efficiency is proposed

as

ME(x, y, t) =
4(ch − c)(c− cl)

(ch − cl)2
(3.1)

where c = c(x, y, t) is the instantaneous concentration at the point (x, y) at time t . Thus

the mixing efficiency is 0 when there is no mixing (that is, when c = ch or c = cl) and 1 when

c = ch+cl
2 .

Figure 3.28 Plot of mixing efficiency as a function of increasing concentra-
tion

3.2.1 Mixing efficiency results for λ = 160

Reproduced below are the simulation results for λ = 160.
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Figure 3.29 Plot of mixing efficiency, λ = 160, t = 0.28

Figure 3.30 Plot of mixing efficiency, λ = 160, t = 2.28

Figure 3.31 Plot of mixing efficiency, λ = 160, t = 4.28

Figure 3.32 Plot of mixing efficiency, λ = 160, t = 6.28

Figure 3.33 Plot of mixing efficiency, λ = 160, t = 8.28

Figure 3.34 Plot of mixing efficiency, λ = 160, t = 10.28

Figure 3.35 Plot of mixing efficiency, λ = 160, t = 12.28
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3.2.2 Average Mixing Efficiency

The regions in red are those in which a lot of mixing has taken place and the blue regions

are ones with very little mixing.

In order to compare the different cases with different values of λ the notion of average

mixing efficiency is introduced as follows.

ME(x) =
∫ H

0

ME(x, y)
H

dy (3.2)

where we integrate along the height of the channel to get the averaged mixing as a function

of the x location.

It is quite instructive to plot the average mixing efficiency as a function of the distance x

for different values of λ to obtain a quantitative estimate of the mixing.

Given below is such a plot where ME(x) has been plotted in the y axis and the distance

x along the length of the channel is plotted in the x axis. ME(x) was averaged over a time

period T for each of the different values of λ

Figure 3.36 Average mixing efficiency along the length for different values
of λ

As we can see from the figure, the mixing(as characterized by the formula above) is quite

enhanced in the beginning portion of the t in the case where λ = 180 while it is attains the
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maximum value for the case λ = 130 towards the end of the t.

3.3 Temporal evolution of the disturbance

Another interesting observation that has come up in this study is the observation that the

time evolution of the disturbance is periodic. This was obtained by plotting the x velocity

component at a monitoring point and observing how it changes with time. In every case of

varying λ from 100 to 180 we could see that the disturbance was quite periodic. Also, for

λ = 80 the disturbances died out due to viscous forces dominating as was also evident from

the concentration plots shown earlier in this chapter. Based on this analysis, the critical value

of λ is somewhere between 80 and 100 though it must be noted that finding the exact critical

value of λ through these types of simulations is not feasible and one would have to resort to

stability analysis.

The velocity of the monitoring point as it varies in time is plotted to obtain the natural

period of the system. The plots are given below.

Figure 3.37 Velocity at monitoring point when λ = 100

The time periods for the different cases are computed and the result is plotted below giving

the natural time period T of the system with respect to λ.
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Figure 3.38 Velocity at monitoring point when λ = 140

Figure 3.39 Variation of the Time period with increasing λ
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λ Time period
100 1.80
120 2.13
130 3.86
140 4.80
150 5.88
160 6.57
180 8.39

Table 3.1 Variation of Time period of disturbance with λ

3.4 Velocity plots

Given below are the plots of the velocity vectors for the case λ = 180. Although no attempt

is made to analyse the physics behind the instability mechanisms it may yet be worthwhile to

look at the vector plots to get a basic feel for the physics behind the instability and mixing. One

can observe the formation of a strong counterclockwise vortex and its propogation downstream

in agreement with the computer simulations of Kang et al (2006)

Figure 3.40 Plot of velocity vectors, λ = 180, t = 0.28

Figure 3.41 Plot of velocity vectors, λ = 180, t = 2.28



www.manaraa.com

30

Figure 3.42 Plot of velocity vectors, λ = 180, t = 4.28

Figure 3.43 Plot of velocity vectors, λ = 180, t = 6.28

Figure 3.44 Plot of velocity vectors, λ = 180, t = 8.28

Figure 3.45 Plot of velocity vectors, λ = 180, t = 10.28

Figure 3.46 Plot of velocity vectors, λ = 180, t = 12.28
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CHAPTER 4. RESULTS: CASE II: THE EFFECT OF FORCING

Having observed the mixing without any forcing, we would like to consider the case of

forcing in order to see the effect it has on the mixing characteristics. Hu and Jin (2007)

observed that maximum mixing can be achieved when the frequency of the external applied

electric field is the same as the natural frequency of the system with no external forcing.

Let E0 be the static electric field that is applied. In this simulation this applied electric

field is replaed by E0+0.25E0 sin(2πt
T ) where T is the time period of the system without forcing

that is obtained in the last chapter.(see Figure 3.39). The mixing efficiency is compared based

on the two cases. The results obtained show that in the cases where λ = 150, 160 and 180 the

mixing obtained is significantly larger than the case where there is no forcing in agreement with

the general experimental observations of Hu and Jin (2007). In the case where λ = 100, 120

there is a marginal increse in the mixing efficiency and when λ = 130 the mixing efficiency

actually is slightly below that of the unforced case.

4.1 Results of simulation with forcing

4.1.1 Case(i): λ = 150

Reproduced below are the results for this case. The interesting observation is that there

is a lot more mixing in the forced case than there is in the unforced case. This is reinforced

by plotting the mixing efficiency for the unforced and the forced case. It is quite evident from

Figure 4.8 that there is significantly greater mixing by forcing at natural frequency compared

to the case of the unforced system.
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Figure 4.1 Plot of concentration with forcing at natural frequency, λ = 150,
t = 0.28

Figure 4.2 Plot of concentration with forcing at natural frequency, λ = 150,
t = 2.28

Figure 4.3 Plot of concentration with forcing at natural frequency, λ = 150,
t = 4.28

Figure 4.4 Plot of concentration with forcing at natural frequency, λ = 150,
t = 6.28

Figure 4.5 Plot of concentration with forcing at natural frequency, λ = 150,
t = 8.28

Figure 4.6 Plot of concentration with forcing at natural frequency, λ = 150,
t = 10.28



www.manaraa.com

33

Figure 4.7 Plot of concentration with forcing at natural frequency, λ = 150,
t = 12.28

Figure 4.8 Comparison of mixing efficiency for forced and unforced cases,
λ = 150
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4.1.2 Case(ii): λ = 180

As in the previous case, in this case too, the mixing obtained is significantly more than in

the unforced case. it can be seen that by the time t = 6.28, there is significantly large amounts

of mixing compared to the previous case. This is evident from the mixing efficiency plotted

below.

Figure 4.9 Plot of concentration with forcing at natural frequency, λ = 180,
t = 0.28

Figure 4.10 Plot of concentration with forcing at natural frequency,
λ = 180, t = 2.28

Figure 4.11 Plot of concentration with forcing at natural frequency,
λ = 180, t = 4.28

4.1.3 Case(iii):λ = 160

For a different perspective, we plot the mixing efficiency for λ = 160 for the forced case

and compare it with the unforced case. In this case too, the mixing obtained due to forcing is

significantly greater than the mixing obtained without forcing.
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Figure 4.12 Plot of concentration with forcing at natural frequency,
λ = 180, t = 6.28

Figure 4.13 Plot of concentration with forcing at natural frequency,
λ = 180, t = 8.28

Figure 4.14 Plot of concentration with forcing at natural frequency,
λ = 180, t = 10.28

Figure 4.15 Comparison of mixing efficiency for forced and unforced cases,
λ = 180
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Figure 4.16 Plot of concentration with forcing at natural frequency,
λ = 160, t = 0.28

Figure 4.17 Plot of concentration with forcing at natural frequency,
λ = 160, t = 2.28

Figure 4.18 Plot of concentration with forcing at natural frequency,
λ = 160, t = 4.28

Figure 4.19 Plot of concentration with forcing at natural frequency,
λ = 160, t = 6.28

Figure 4.20 Plot of concentration with forcing at natural frequency,
λ = 160, t = 8.28

Figure 4.21 Plot of concentration with forcing at natural frequency,
λ = 160, t = 10.28
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Figure 4.22 Plot of concentration with forcing at natural frequency,
λ = 160, t = 12.28

Figure 4.23 Comparison of mixing efficiency for forced and unforced cases,
λ = 160
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4.2 Average Mixing Efficiency with oscillation

It is also instructive to plot the mixing efficiencies with forcing for different values of λ.

We can see from the plot below that the mixing efficiency is maximum for the case λ = 180

and increases with increasing value of λ. This result is in contrast to the unforced case where

the maximum mixing efficiency was obtained for the case λ = 130. We can also see that in the

case of λ = 80, there is much less mixing which shows that the mixing is due to the instability

and not simply due to external forcing of the electric field. Simulations are also performed by

oscillating the applied electric field at twice the frequency of the natural disturbance. Although

the results are not presented here, it was observed that the effect on the mixing efficiency is

very similar to the case of oscillating the electric field at the natural frequency. Thus, although

oscillating the electric field at twice the natural frequency gives enhanced mixing compared

to the case with no oscillation, the effect of oscillation at the natural frequency or twice the

natural frequency seems to be quite the same.

Figure 4.24 Average mixing efficiency along the length with forcing for
different values of λ
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CHAPTER 5. CONCLUSION

5.1 Summary

In order to understand the mixing characteristics of electrohydrodynamic flows in micro-

scales, a computational study was performed in a t-shaped configuration with two streams

having similar mechanical properties but differing in their electrical conductivities. The mix-

ing was characterized in terms of a nondimensional number λ and the effect of varying this

parameter on mixing was studied by means of computer simulations. A nondimensional mix-

ing efficiency was proposed based on the relative concentrations of the two mixing streams

and the mixing was quantitatively characterized based on this mixing efficiency. The conclu-

sion was that in the case where there was no forcing, maximum mixing occured for the case

when λ = 130 towards the downstream portion of the ’t’ channel. A surprising observation

was that, for all the cases considered, varying from λ = 80 to λ = 180, the disturbance had

a natural frequency associated with it and the time period of this disturbance was directly

proportional to the value of λ. When the applied electric field was oscillated at the natural

frequency of the disturbance, it was observed that there was significantly more mixing in the

cases where λ = 150, 160 and 180 quite in agreement to the experimental observations of Hu

and Jin (2007). In this case the mixing efficiency seemed to increase with increasing values

of λ. Simulations were also performed by oscillating the applied electric field at twice the

frequency of the natural disturbance. In this case the mixing efficiency was observed to be

quite similar to the case of oscillating the electric field at the natural frequency. In the case of

varying amplitude of the applied electric field, there is a marginal increase initially for increas-

ing amplitude and then a significant increase when the amplitude of the applied field is about

half the amplitude of the d.c. electric field which is also in agreement with the experimental
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results of Hu and Jin (2007).

5.2 Suggestions for future work

One can continue this study in several different directions. Full scale three dimensional

simulations can be performed instead of the present two dimensional simulations. One can also

parallelize the code to obtain better computational performance. Methods from stability theory

can be employed to better understand the instability mechanism and identify the physical

mechanisms responsible for causing the instability. The present simulations were run for a

fixed concentration ratio. One can do many simulations by varying different parameters and

then perform an optimization study to find out how to maximize the mixing: either obtain

mixing in even shorter length scales or obtain mixing faster in time.



www.manaraa.com

41

BIBLIOGRAPHY

Baygents, J. C, Baldessari, F (1998). Electrohydrodynamic Instability in a thin fluid layer with

an electrical conductivity gradient. Physics of Fluids, 10,301

Chen, C. H., Santiago,J. G.(2002) Electrokinetic instability in high concentration gradient

microflows. Proc. IMECE-2002 CD Vol.1, 33563

Chen, C-H, Lin,H., Lele, S.K., Santiago, J,G (2003). Electrokinetic microflow Instabilities with

conductivity gradients 7th Int. Conf. Chem and Biochem Anal Sys, Squaw Valley, CApp-

983-987

Chen, C-H, Lin,H., Lele, S.K., Santiago, J,G (2005). Convective and absolute electrokinetic

instability with conductivity gradients. Journal of Fluid Mechanics, Vol 524, pp-263-303

Double layer (interfacial). (2009, February 19). In Wikipedia, the free encyclopedia. Retrieved

February 19, 2009, from http://en.wikipedia.org/wiki/Double layer (interfacial)

Ferziger, J. H., Peric, M. (1994) Computational Methods for Fluid Dynamics, Springer

Ferziger, J. H., Peric, M. (1994) Computer Codes for Computational Methods for Fluid Dy-

namics, available at ftp://ftp.springer.de/pub/technik/peric/

Hoburg, J. F, Melcher, J. R (1976). Internal electrohydrodynamic instability and mixing of flu-

ids with orthogonal field and conductivity gradients. Journal of Fluid Mechanics,Vol.73,part

2,

Hu, H., Jin, Z.,(2007). Fluid mixing control inside a Y-shaped microchannel by using electroki-

netic instability Proc. of FEDSM07



www.manaraa.com

42

Kang, K. H, Park, J.,Kang, I. S.,Huh,K. Y(2006). Initial growth of electrohydrodynamic in-

stability of two-layered miscible fluids in T-shaped microchannels. International Journal of

Heat and Mass Transfer, 49, pp-4577-4583

Lin, H., Storey, B. D., Oddy, M. H., Chen, C-H., Santiago, J. G(2004). Instability of electroki-

netic microchannel flows with conductivity gradients. Physics of Fluids, 16, pp 1922-1935

Oddy, M. H.,(2005). Electrokinetic Transport Phenomena:Mobility measurement and Elec-

trokinetic Instability. PhD Thesis, Stanford University.

Park, J., Shin, S. M., Huh, K. Y, Kang, I. S(2005) Application of electrokinet ic instability for

enhanced mixing in various micro- T-channel geometries. Physics of Fluids, 17, 118101

Patankar,S. V., (1980) Numerical Heat transfer and Fluid Flow, Taylor and Francis

Probstein, R. F. (1994). Physicochemical Hydrodynamics John Wiley and Sons Inc,

Rhie, C. M., Chow, W. L.,(1983). A numerical study of the turbulent flow past an isolated

airfoil with trailing edge separation. AIAA J. 21, pp 1525-1532

Saville, D. A, (1998). Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. An-

nual Review of Fluid Mechanics, 29,27-64

Stone, H. L., (1968). Iterative solution of implicit approximations of multidimensional partial

differential equations. SIAM J. Numer Anal. 5, pp 530-558

Taylor, G. I. , Melcher, J. R (1969). Electrohydrodynamics: A Review of the Role of Interfacial

Shear Stresses. Annual Review of Fluid Mechanics, Vol.1,


	2009
	Electrohydrodynamic instabilities in microchannels: a computational study
	Shibi Vasisht Kapisthalam Vasudevan
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Motivation
	1.2 Some Technical Terms
	1.2.1 Electric Double Layer
	1.2.2 Electroosmosis and Electrophoresis
	1.2.3 Electrokinetics

	1.3 Survey of Literature
	1.4 A brief overview of the instability mechanism
	1.5 Scope of the current work

	2. NUMERICAL METHODS
	2.1 Introduction
	2.2 Governing Equations
	2.3 Initial and Boundary Conditions
	2.4 Nondimensionalization
	2.5 Solution methodology

	3. RESULTS: CASE I: UNFORCED CASE
	3.1 Preliminary results
	3.1.1 Case(i): = 80
	3.1.2 Case(ii): = 120
	3.1.3 Case(iii): = 150
	3.1.4 Case(iv): = 180

	3.2 Mixing Efficiency
	3.2.1 Mixing efficiency results for =160
	3.2.2 Average Mixing Efficiency

	3.3 Temporal evolution of the disturbance
	3.4 Velocity plots

	4. RESULTS: CASE II: THE EFFECT OF FORCING
	4.1 Results of simulation with forcing
	4.1.1 Case(i): =150
	4.1.2 Case(ii): =180
	4.1.3 Case(iii):=160

	4.2 Average Mixing Efficiency with oscillation

	5. CONCLUSION
	5.1 Summary
	5.2 Suggestions for future work

	BIBLIOGRAPHY

